skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Owen Aquino, Alejandro D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To compute reliable and low-cost operating points, electric power system operators solve optimization problems that enforce inequality constraints such as limits on line flows, voltage magnitudes, and generator outputs. A common empirical observation regarding these constraints is that only a small fraction of them are binding (satisfied with equality) during operation. Furthermore, the same constraints tend to be binding across time periods. Recent research efforts have developed constraint screening algorithms that formalize this observation and allow for screening across operational conditions that are representative of longer time periods. These algorithms identify redundant constraints, i.e., constraints that can never be violated if other constraints are satisfied, by solving optimization problems for each constraint separately. This paper investigates how the choice of power flow formulation, represented either by the non-convex AC power flow, convex relaxations, or a linear DC approximation, impacts the results and the computational time of the screening method. This allows us to characterize the conservativeness of convex relaxations in constraint screening and assess the efficacy of the DC approximation in this context. 
    more » « less